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Influence of laser pulse on the autocorrelation function of H

in a strong electric field
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The autocorrelation function of electronic wave packet of hydrogen atom in a strong electric field below
the zero-field ionization threshold is investigated in the formalism of semiclassical theory. It is found that
the autocorrelation depends on the applied laser pulse significantly. In the case of narrow laser pulse, the
reviving peaks in the autocorrelation can be attributed to the closed orbits of electrons, which are related
to the classical dynamics of the system. But this correspondence is wiped out with increasing the laser
width because of the interference among the adjacent reviving peaks.
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During the past few decades, short-pulse tunable laser
technology has been developed constantly and one of its
physical applications is to excite electronic wave pack-
ets in atomic systems. The information of the evolving
Rydberg wave packet is related to the correspondence be-
tween classical and quantum dynamics. There have been
considerable theoretical and experimental works for Ryd-
berg wave packet dynamics with or without the presence
of external fields. For instance, the dynamics of the elec-
tronic wave function of hydrogen was investigated experi-
mentally by Noordam et al.

[1] and rubidium system in an
electric field by Broers et al.

[2,3]. And more recent results
can be found in Refs. [4,5]. In these experiments, the
wave packet dynamics in an electric field above the classi-
cal field ionization were investigated with a double-pulse
technique and the absolute values of the autocorrelation
functions 〈ψ (0)|ψ (t)〉 were measured, which reflect the
underlying dynamics of the wave packet.

To investigate the autocorrelation function theoreti-
cally, we can in principle propagate the wave packet till
time t and calculate the resemblance between the wave
packet at time t and the initial wave packet. The wave
packet can be represented by superimposing the eigen-
states of the system[6−8]. Unfortunately, the descrip-
tion of wave packet by superimposing the eigenstates is
a difficult task in most cases since it involves so many
eigen functions. Du et al. related the autocorrelation
function with the oscillator strength density which can
be approximated by closed orbit theory[9,10]. Further-
more, they derived a general formula of autocorrelation
function based on the closed orbits in a static electric
field[11]. Yu et al. obtained the autocorrelation function
of hydrogen atoms in magnetic fields[12].

In this letter, we investigate the autocorrelation of elec-
tronic wave packet of hydrogen atoms in an electric field
in the framework of semiclassical theory which has an
intuitive physical picture and provides some useful in-
formation of the correspondence between classical and
quantum dynamics. The problem of an atom in an elec-
trical field has been studied extensively in past years.
Especially, Gao et al. recently studied closed orbits and

recurrence for single-electron atoms in electric fields[13].
They argued that at high energy only one orbit exists,
and new orbits are bifurcated with the energy below the
zero-field ionization threshold. As we have known, hy-
drogen atom in electric field is an important model to es-
tablish a relation between quantum and classical dynam-
ics picture. So its wave packet dynamics, when a pulsed
laser is applied to H atomic system, has important theo-
retical meaning. By using the semiclassical closed orbits
theory, we calculate the autocorrelation function of the
first several closed orbits at a fixed scaled energy and an-
alyze the influences of the laser pulse width and the orbit
bifurcation on the autocorrelation function. Atomic units
are used throughout the letter unless otherwise noted.

To investigate the autocorrelation function of H in an
electric field in semiclassical framework, it is necessary to
find the closed orbits of the active electron which starts
and ends at the nucleus. The dynamics of a highly ex-
cited hydrogen atom in the presence of an external static
electric field aligned along the z axis is described by a
single-particle, nonrelativistic Hamiltonian. In cylindri-
cal coordinates (ρ, φ, z), it can be written as

H =
1

2

(

p2
z + p2

ρ + l2z/ρ
2
)

− 1/
(

ρ2 + z2
)1/2

+ Fz, (1)

where F is the electric field strength.
By using a scaled-variable method (varying the elec-

tron energy and the electric field simultaneously to keep
the scaled energy fixed), we can find that the closed or-
bits have simple patterns, and the associated recurrences
emerge naturally. Transforming to scaled semiparabolic
coordinates (u, v) and considering the case of lz = 0, we
have the transformed Hamiltonian

H̃ =
1

2

(

p2
u + p2

v

)

+
1

2

(

u4 − v4
)

− ε
(

u2 + v2
)

− 2, (2)

where pu = du/dτ , pv = dv/dτ , dτ/dt = 1/(u2 + v2),
and ε = E/F 1/2 is the scaled energy.

After this transformation, the Coulomb singularities
have been vanished. Therefore, we can numerically in-
tegrate the motion equations for (u, v, pu, pv) of Eq. (2),
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Table 1. Initial Angle, Action, and Scaled Period in
the ρ-z Plane for the First Six Closed Orbits of
Hydrogen in an Electric Field with ε = −0.266

at F = 400 kV/cm

Orbit Initial Angle (deg.) Action S (a.u.) Period T (a.u.)

1 0.0 4.50906 1777.36601

2 0.0 9.05811 3554.73225

3 0.0 13.56717 5332.09833

4 13.0 13.56544 5744.74236

5 0.0 18.07623 7109.46456

6 15.0 18.04487 8151.91699

namely,

u̇ =
∂H̃

∂pu
, v̇ =

∂H̃

∂pv
, ṗu = −∂H̃

∂u
, ṗv = −∂H̃

∂v
. (3)

Using a standard fifth-order Runge-Kutta method to in-
tegrate the motion equations, the closed orbits can be
found in a straightforward manner. The first six closed
orbits are listed in the Table 1. For each closed orbit,
we calculate its classical action Sk and scaled period Tk,
where k runs over all of the closed orbits.

The time evolution of the wave packet is characterized
by the autocorrelation function defined by

ψAC (t) = 〈ψ (0)|ψ (t)〉 , (4)

where |ψ (t)〉 is the wave function at time t. This ex-
presses the notion that we directly measure the overlap
between the wave packet at time t and the initial wave
packet |ψ (0)〉. The autocorrelation function can be cal-
culated based on the closed orbit theory. We give the the-
oretical formula of the autocorrelation function by briefly
following Ref. [11] and apply it to the system for H in the
electric field. Let the initial state of the atomic system
be ψi (r) and the wave packet generated by a short-pulse
laser is ψ (t). Assuming the short-pulse laser is in the
form

f (t) = fm exp
(

−t2/2τ2
)

cos (ωt+ φ) , (5)

where ω, fm and τ are the frequency, peak amplitude and
pulse width, respectively. The final state excited by the
pulse is ψf (r), with energy Ef centered at Ec

f = Ei + ω
and a few 1/τ width.

According to the time dependent perturbation theory,
the autocorrelation function can be written as

〈ψ (0) |ψ (t)〉 =

∫

dE exp (−iEt) |g (E − Ei)|2

×
[

Df (E)

2 (E − Ei)

]

, (6)

where

g (E − Ei) =

∫

dtf (t) exp (− (E − Ei) t) (7)

is the Fourier transformation of the short-pulse laser,
Df (E) is the oscillator-strength density. Using the ro-
tating wave approximation, we obtain

g (E − Ei) = τfm

[π

2

]1/2

e−
(E−Ei−ω)2τ

2

2 e−iφ. (8)

In virtue of |g (E − Ei)|2 is a Gaussian shape with
width of 1/τ and attains the peak when the energy
Ec

f = Ei+ω, and the effective part of Eq. (6) is limited to
an interval centered at Ef and 1/τ wide. Considering this
small energy interval, the oscillator-strength density can
be approximated by using the formula of the standard
closed orbit theory as

Df (Ec
f + δE) = Df0 (Ec

f ) +
∑

k

Ck (Ec
f ) sin

[

Tk (Ec
f ) δE

+
1

2
T ′

k (Ec
f ) δE

2 + ∆k (Ec
f )

]

, (9)

where T ′
k = dTk/dE

c
f , δE is the deviation of energy from

Ec
f , and the sum is over all the closed orbits of the sys-

tem. We can expand the phases of the oscillations to
the second order in the energy difference δE and set the
amplitudes of the oscillations to constants. We can see
that each oscillation in Eq. (9) corresponds to a closed
orbit in this system and the oscillation is related to the
stability property of the corresponding closed orbit, the
laser polarization, and the initial quantum state.

Inserting Eqs. (8) and (9) into Eq. (6), replacing
(E − Ei) in the denominator of the integrand by ω, and
carrying out the integral, we have

ψAC (t) =

[

τf2
m

√
π3 (Df0)

4ω

]

×e−iEc
f t

{

e−t2/4τ2

+
∑

k

[

G−
k (t) +G+

k (t)
]

}

,

(10)

G±
k =

[

Ck

2 (Df0)α
±
k

]

× e
−
h
(t±Tk)2/4τ2(α±

k )
2
i
∓i(∆k−π/2)

,

(11)

where α±
k =

√

1 ± i [T ′
k (Ec

f ) /2τ
2]. Equation (10) is

the autocorrelation function involving the laser-pulse pa-
rameters and the dynamical variables in the closed or-
bit theory. We can see that the autocorrelation func-
tion includes a sum of modified Gaussian terms. Each
modified Gaussian term in the autocorrelation function
corresponds to a parent oscillation term in the oscillator-
strength density expressed in the closed orbit theory. The
laser polarization, initial quantum state, and properties
of the closed orbits of the system are known parameters.
We can calculate the modified Gaussian terms in the au-
tocorrelation function and the parent oscillation in the
oscillator-strength density with the existing algorithms
of closed orbit theory.

The theory can be applied directly to H atom in pres-
ence of a static electric field below the zero-field ion-
ization threshold. The wave packet generated by a
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short-pulse laser of the form in Eq. (5) is ψ (t) and the
autocorrelation function can be written as

〈ψ (0) |ψ (t)〉 = C0M (t) , (12)

M (t) = e−t2/4τ2

+
d

α−
k

e
−
h
(t−Tk)2/4τ2(α−

k )2
i
+i(∆k−π/2)

+
d

α+
k

e
−
h
(t+Tk)2/4τ2(α+

k )2
i
−i(∆k−π/2)

, (13)

where
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τf2

m

√
π3 (Df0)

4ω
e−iEc

f t,

d =
[

3F/8
√

2 (Ec
f )

3/2
]

= [3F 1/4/8
√

2ε3/2],

α±
k =

√

1 ± (i/2τ2)T ′
k.

We can see from Eq. (13) that the autocorrelation func-
tion for H in a strong static electric field below threshold
contains (2k + 1) peaks centered at t = 0 and ±Tk.
The peak centered at t = 0 in Eq. (13) comes from the
nonoscillatory background term in the oscillator-strength
density. The other peaks centered at t = ±Tk are related
to the oscillatory terms in the oscillator-strength density
in Eq. (9). For the system of H in a static electric field,
there are several stable closed orbits with traveling time
Tk. These closed orbits are corresponding to the oscilla-
tory terms in the oscillatory-strength density in Eq. (9)
and the peaks centered at t = ±Tk in the autocorrelation
function.

By comparing Eq. (12) with Eq. (13), we find that
M (t) could be regarded as an effective autocorrelation
function since the constant factor C0 has no influence on
the experimental measurement.

We compute the autocorrelation function of H in a
static electric field below threshold and analyze the width
of the laser pulse effect on the autocorrelation function.
The time dependence of the absolute value of the auto-
correlation function is entirely contained in the function
|M (t)|, which is shown in Fig. 1 for positive time. The
negative time part is symmetric: |M (−t)| = |M (t)|.

Figures 1(a)—(d) show the autocorrelations at four
different widths of the pulse at a fixed electric field
strength F = 400 kV/cm. In all cases, the peak cen-
tered at t = 0 comes from the background term in the
oscillator-strength density and is not related to any real
orbit. The closed orbit theory gives the following physi-
cal picture for the wave packet reviving. The incoming
laser pulse excites a wave packet that is localized in the
region of the initial bound state of hydrogen atoms at the
beginning. This wave then propagates away from the nu-
cleus to large distance far from the nucleus and it can be
approximated according to semiclassical approach which
is correlated with classical trajectories. Eventually, these
trajectories are turned back by the electric field, some of
the orbits return to the vicinity of the nucleus, and the as-
sociated waves interfere with the outgoing waves to pro-
duce the observed oscillation in the time-reserved spec-
trum. One can see in Fig. 1(a) that the autocorrelation

Fig. 1. Amplitudes of autocorrelation around the first six
closed orbits for four different pulse widths. (a) τ = 30 (a.u.),
(b) τ = 100 (a.u.), (c) τ = 200 (a.u.), (d) τ = 500 (a.u.). The
strength of electric field is fixed at F = 400 kV/cm.

function produced by a short laser pulse shows six peaks
(each closed orbit gives an oscillatory contribution to the
autocorrelation function). It is found that when a new
closed orbit is born, there appears a new oscillation in
the time-resolved spectrum. This phenomenon can be
explained in terms of wave packet theory. Since the os-
cillation in the autocorrelation function is generated by
the interference of wave packets, when the wave packet
returns to the nucleus along the orbit at Tk, the returning
piece of the wave packet overlaps with ψ (0) and produces
the peak at Tk. Obviously, if the time duration becomes
longer, there will be more peaks in the autocorrelation
function. Figure 1(b) also shows six peaks centered
at T = T1, T2, T3, T4, T5, T6 in the autocorrelation
function. On the other hand, the width of the return-
ing peak depends on the laser pulse width. The peaks
go more widely with the increasing pulse width. The
phenomena develop to some extent, and their mutual in-
terference occurs. Figure 1(c) shows the interference and
only five peaks appear in the autocorrelation function.
Figure 1(d) shows the decreasing oscillation of the auto-
correlation function further. We can see that when the
laser pulse width becomes longer, the oscillations become
smoother. The structure in Fig. 1 can be understood in
the following way. The electronic wave packet created by
a narrower laser pulse is more localized in space and it
is easy to distinguish those belonging to different closed
orbits. However, with the increasing laser pulse width,
it is hard to distinguish them because of their extension
in space and the interference between them. Because
of this effect, the width of reviving peaks in the auto-
correlation function grows and even two adjacent peaks
merge into the recurrence spectrum. For example, when
the pulse width τ = 200 (a.u.) (Fig. 1(c)), the number
of peaks reduces by one due to the merging. When τ is
much smaller than the space between adjacent peaks, the
autocorrelation function keeps its discrete peaks. Con-
versely, the mutual interfere effect of the discrete peaks
is remarkable.

In summary, we examined the dynamics of the elec-
tronic wave packet of a hydrogen atom in an electric
field when a short laser pulse was applied to the system.
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Using a simple analytic formula from semiclassical closed
orbit theory, we calculated the autocorrelation function
of the wave packet below the zero-field ionization thresh-
old for different pulse widths. The calculation results
show that the autocorrelation function displays different
amplitudes of oscillation for different pulses. The oscilla-
tion in the autocorrelation function can be attributed to
the interference induced by the outgoing and returning
electron waves travelling along the closed orbits. With
the increasing laser pulse width, we have the growing
width of reviving peaks in the autocorrelation function,
and this eventually leads to their mutual interference.
The interference is related to the duration of laser pulse.
It may provide a visual demonstration for the under-
standing of the dynamical behavior of Rydberg atoms in
strong electric fields. We are expecting that our results
can be tested in a future experiment.
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